Innovation Takes Off

www.cleansky.eu
Clean Sky 2 Information Day

AIRFRAME ITD

Yvon OLLIVIER – Dassault Aviation
Miguel LLORCA SANZ – EADS-CASA

Toulouse, 4th of September 2014

www.cleansky.eu
From *Clean Sky* towards *Clean Sky 2*

- Greener Airframe Technologies
- More Electrical a/c architectures

- More efficient wing
- Novel Propulsion Integration Strategy
- Optimized control surfaces

- Integrated Structures
- Smart high lift devices

Step changes in the “efficiency” of all airframe elements by the means of a systematic “re-thinking”
From the Impact Perspective

<table>
<thead>
<tr>
<th>From the</th>
<th>Expected Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Perspective</td>
<td>• More resource efficient aircraft : challenging targets for up to
• (\leq 30%) cumulative (CO_2)
• (\leq 10) EPNdB
• Eco responsible industrial capabilities</td>
</tr>
<tr>
<td>Smart & Efficient Mobility Perspective</td>
<td>• Increased operational flexibility (flight domain)
• Access to dense populated areas : low noise and low speed performances
• Access to remote areas performances : short take off and landing, reduced a/c ground infrastructure, remote repairing
• Travelling Time not as a wasted Time : passenger well-being
• Sustainable traffic growth</td>
</tr>
<tr>
<td>Industrial Leadership Perspective</td>
<td>• Cost efficient Products
• Strong Product Differentiators
• Cost efficient engineering, manufacturing & life cycle support processes (up to recycling)
• Reduced time to market
• Sustainable industrial capability</td>
</tr>
</tbody>
</table>
Overall Technical Overview

<table>
<thead>
<tr>
<th>Focused Integrated Demonstrations</th>
<th>Innovative Aircraft Architecture</th>
<th>Advanced Laminarity</th>
<th>High Speed Airframe</th>
<th>Novel Control</th>
<th>Novel travel experience</th>
<th>Next generation optimized wing</th>
<th>Optimized high lift configs.</th>
<th>Advanced integrated structures</th>
<th>Advanced Fuselage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigate advanced engine integration & novel overall architecture</td>
<td>Laminar nacelles; NLF smart integrated wing fitting the industrial environment</td>
<td>High efficient multi-disciplinary flexible wing; fuselage changes in shapes, & structure</td>
<td>Smart multi-function control surfaces & load & flutter alleviation</td>
<td>Passenger friendly cabin; ergonomic & flexible, new volume utilisation</td>
<td>Low cost composite structures</td>
<td>Efficient architectural concept for turbopropeller high wing – composite nacelle & adaptative wing</td>
<td>New structural paradigm for optimised integration of systems in airframe, electrical wing</td>
<td>Novel composite fuselage & tailless or pressurized fuselage for rotorcraft</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transverse Enabling Capability</th>
<th>Novel Certificate®</th>
<th>Extended Laminarity</th>
<th>Eco Design</th>
<th>More Efficient Wing</th>
<th>Advanced Manufact.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CW1 : AIRFRAME ITD ST List

- **6 Strategic Topics (ST)**
- **Total funding of 43,5 M€**

<table>
<thead>
<tr>
<th>Activity Line</th>
<th>Identification</th>
<th>Title</th>
<th>Leading Company</th>
<th>Funding (M€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>AIR-01-01</td>
<td>New Innovative Aircraft Configurations and Related Issues</td>
<td>DAv, Airbus, A-H</td>
<td>14</td>
</tr>
<tr>
<td>A</td>
<td>AIR-01-02</td>
<td>e-WIPS integration on novel control surface</td>
<td>DAv, Airbus</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>AIR-02-01</td>
<td>New wing and aircraft systems design and integration for Turboprop regional aircraft</td>
<td>CASA</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>AIR-02-02</td>
<td>Wing and Tail Unit Components Multifunctional Design and Manufacturing (including Out of Autoclave composite)</td>
<td>CASA, A-H</td>
<td>7,5</td>
</tr>
<tr>
<td>B</td>
<td>AIR-02-03</td>
<td>Advanced technologies for more affordable composite fuselage</td>
<td>ALENIA</td>
<td>6,5</td>
</tr>
<tr>
<td>B</td>
<td>AIR-02-04</td>
<td>Design and manufacturing of an advanced wing structure for rotorcraft additional lift</td>
<td>A-H</td>
<td>5,5</td>
</tr>
</tbody>
</table>
HPE Related WPs

A - High Performance and Energy Efficiency

TS A-0: Management & Interface
WP A-0.1 Overall Management
WP A-0.2 Business Aviation OAD & config. Mgt
WP A-0.3 LPA OAD & config. Mgt
WP A-0.4 Eco-Design Manag' & MPR technologies

TS A-1: Innovative Aircraft Architecture
WP A-1.1 Optimal engine integration on rear fuselage
WP A-1.2 CROR configuration
WP A-1.3 Novel high speed configuration
WP A-1.4 Novel certification processes

TS A-2: Advanced Laminarity
WP A-2.1 Laminar nacelle
WP A-2.2 NLF smart integrated wing
WP A-2.3 Extended laminarity

TS A-3: High Speed Airframe
WP A-3.1 Multidisciplinary wing for high & low speed
WP A-3.2 Tailored front fuselage
WP A-3.3 Innovative shapes & structure
WP A-3.4 Eco-Design for airframe

TS A-4: Novel Control
WP A-4.1 Smart mobile control surfaces
WP A-4.2 Active load control

TS A-5: Novel travel experience
WP A-5.1 Ergonomic flexible cabin
WP A-5.2 Office Centered Cabin

AIR-01-01 New Innovative Aircraft Configurations and Related Issues
AIR-01-02 e-WIPS integration on novel control surface

Note: a coloured square means a contribution of the ST to the WP
HVCE Related WPs

Air-01-01 New Innovative Aircraft Configurations and Related Issues

Air-02-01 New wing and aircraft systems design and integration for Turboprop regional aircraft

Air-02-02 Wing and Tail Unit Components Multifunctional Design and Manufacturing (including Out of Autoclave composite)

Air-02-03 Advanced technologies for more affordable composite fuselage

Air-02-04 Design and manufacturing of an advanced wing structure for rotorcraft additional lift

Note: when 2 coloured squares are on the same WP, the ST contribution are different
• Leading Companies: Dassault Aviation, Airbus, Airbus Helicopters
• Estimated Funding: 14 M€
• Duration: 8 Years
• Start date: 01/04/2015
• SoW Overview:
 – TS A-1 - Contribution of Core-Partners to engine relevant integration studies and to novel high efficiency configuration
 – TS A-2 – Contribution for part design optimization & manufacturing especially at level of technologies for laminar surfaces (wing and nacelle external surfaces)
 – TS A-4.2 - Development of methodology and system for the load, vibration and flutter active control, ground test and in flight tests and validation. Definition of an approach to certification.
 – TS B-1.1 - Aerodynamic design of compound rotorcraft wing and interaction with propellers, including effect on noise emission
 – TS B-4.1 - Aerodynamic design of compound rotorcraft tail surfaces
• A-1.1 - Rear Fuselage integration (examples)
 – Buried engines
 – BLI
 – High BPR engine
 – Vectored thrust

• A-1.3 - Novel High Efficiency Configurations (examples)
 – Innovative wing such as rhomboidal concept
 – Non-cylindrical fuselage
 – Flying wing

• A-2 – Advanced Laminar Flow
 – Laminar nacelle: aerodynamic design, structural concept for NLF, HLFC
 – NLF smart integrated wing
 – Extended laminarity: aerodynamic design and structural design for NLF, suction for HLFC
• **A-4.2 – Active Load Control**
 - Gust load alleviation
 - Counter-act flutter initiation or vibrations

• **B-1.1 – Wing for incremental lift and transmission shaft integration**
 - Wing surface design integrating interactional effects
 - Propeller surface design integrating interactional effects
 - Noise shielding effect of the wing and fuselage
 - Validation of aeroacoustic models

• **B-4.1 - Rotor-less Tail for Fast Rotorcraft**
 - Tail unit aerodynamic design
The capability of the CP shall be on a large range of areas as it is required to act at aircraft level. It means a multi-disciplinary set of skills. Important are:

- **Flow simulation and analysis** including capability to develop new methodologies,
- **A/C configuration design**, sizing and optimisation, MDO
- **Aero-structure design** (loads & flutter evaluation) and modelling
- Acoustic, fuel consumption and NOx emission **analysis and assessments**
- Development and demonstration of **active noise reduction** systems
- **WTT** specifications and result analysis including modelling correlations
- Abilities to organise and perform **distortion measurement in WTT**
- Development of methodology and system for the load, vibration and flutter **active control**, ground test and in flight tests and validation
- Aerodynamics: CFD modelling, Aero elasticity skills, Laminar flow technology, Flow control simulations
• Leading Companies: **Dassault Aviation, Airbus**

• Estimated Funding: **5 M€**

• Duration: **8 Years**

• Start date: **01/01/2015**

• SoW Overview:

 – This topic addresses all the aspects of **leading edge slat ice protection system technology**, design and certification for N+1 generation.

 – For the N+2 generation, continuation of exploration of **de-icing schemes** including the ability to create accurate computer models of their operation. The goal would be to develop completely the **processes and tools** needed to optimise the design of such systems.

 – For the N+3 generation (entering service in the 2030s) laying the foundation of **radically new approaches** to ice protection, offering opportunities to study technology with lower maturity.
• **Electro-thermal** and **mixed air/electric** running wet anti-ice wing inner section demonstrator, focused on a **business jet** wing with a polished aluminium leading edge
 – Development and demonstration to TRL 6 (IWTT, integration to Copper Bird)
 – Associated theoretical and experimental study of **manufacturing techniques**
 – **Flat samples** of various heating mat fabrications including polished aluminium erosion shield and heating element assembled

• **3D simulation of accretion and operation** of a running-wet anti-ice system in the context of the **air intake** to the embedded central engine in a **three-engine business jet**

• Development of a TRL 5 prototype of a **travelling wire bundle or similar device** to connect heaters on a movable leading edge slat to the electrical harness

• Integrate accurate models of ice shedding and ice fracture in general purpose ice protection simulation tools, and achieve the **simulation capability** of:
 – **Electro-thermal de-icing systems** consistent with a development at TRL 4
 – **Electro-mechanical de-icing systems** consistent with a development at TRL 3

• In liaison with the SYSTEMS ITD, study to define and **optimise the electric architecture** compliant with power availability requirements common to all **large jets** in conjunction with a suitably designed ice protection system

• **Innovative materials and coatings** for surfaces equipped with passive ice protection

• Technology down-selection process applied to breakthrough approaches to **ice-protection** for jets entering service in the **2030s**.
• Leading Companies: **EADS CASA**
• Estimated Funding: **5 M€**
• Duration: **7 Years**
• Start date: **01/01/2015**
• Overview:
 Design, manufacturing and qualification for flight adapted for new wing for an aircraft of the size of the regional turboprop:
 – FCS: EMA and associated ECU
 – EPDS: Electrical distribution unit
 – IPS: Anti-ice technology solution integrated on a representative surface
 – SATCOM:
 • RF Unit (radiating element, amplifier…) integrated on a representative surface
 • Integration of an antenna system on structure
 – Landing Gear:
 • Instrumented bolt
 • Electrical valve and shock absorber
For each component:

- Support to WAL in performing the **trade-off** between different alternatives
- **Detailed specifications and requirements** of equipment based from the high level requirements received from WAL
- **Preliminary definition** of equipment (including the integrated concept) → PDR
- **Detailed design** of equipment → CDR
- Validation and Qualification **Test Plan** Definition
- Definition of **Laboratory Test Bench** Specification
- **Manufacturing, Assembly and Tuning** of equipment
- **Validation and Qualification Tests** realization and results
- Component **documentation** and support to obtain the FTB2 Airworthiness
- **Support to flight testing** campaign.
Main Skills, certification and equipment expected:

- Capacity to support documentation and means of compliance to achieve prototype “Permit to Fly” with Airworthiness Authorities (FAA, EASA...)
- Capacity to specify components and systems tests along the design and manufacturing phases of aeronautical equipment
- Capacity to provide support to system functional tests of large aeronautical equipment: Definition + Preparation + Analysis
- Product Organization Approvals (POA)
- Capacity to support to structural and functional tests of antenna system
- Certified facilities for the antenna measurement
For each component:

<table>
<thead>
<tr>
<th>Milestones</th>
<th>Year 2015</th>
<th>Year 2016</th>
<th>Year 2017</th>
<th>Year 2018</th>
<th>Year 2019</th>
<th>Year 2020</th>
<th>Year 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1Q 2Q 3Q 4Q</td>
</tr>
<tr>
<td>Concept and Preliminary Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical Design Review (CDR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery acceptance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Readiness Review (TRR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery to FTB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final assessment review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final assessment review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissemination & Exploitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SATCOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LG Health Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LG Magneto rheological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Leading Companies: **EADS CASA**, Airbus Helicopters
• Estimated Funding: **7,5 M€**
• Duration: **7 Years**
• Start date: **01/01/2015**
• Overview:

Design and manufacture aeronautical components for Clean Sky 2 demonstrators: **Regional Aircraft FTB2 → wing components**; **LifeRCraft → tail unit**. These components will include the state of the art in:

– Composite manufacturing (i.e. out of autoclave processes)
– Innovative materials (i.e. thermoplastics)
– Adaption of structural architectures to host highly integrated systems

With optimisation criteria such as Eco-Design, Low Cost, High Quality and Low Weight objectives and requirements

Sharing is 66% wing, 33% tail
Components to be developed, manufactured and validated to TRL 6 are:

For the **Regional Aircraft FTB2**:
- Outer External Wing – Upper Skin: innovative materials and manufacturing process
- Winglet: morphing design to improve a/c performance
- Out-Board Flap: new design to improve a/c performance
- External Wing Leading Edge: morphing design to improve a/c performance
- Outer External Wing – Ribs: innovative materials and manufacturing process

For the **LifeRCraft**:
- Tail Boom: innovative materials, manufacturing process and light weight structures.
- HTP: innovative manufacturing process and design to improve R/C performance and light weight structures
- VTP: innovative manufacturing process and design to improve R/C performance and light weight structures
- Surface Control: innovative manufacturing process and design
Main Skills, certification and equipment expected:

- Design and manufacturing of structures of composite materials (thermoset and thermoplastic) and innovative metallic components
- Experience in collaborating with reference aeronautical companies with industrial air vehicle developments with “in–flight” components
- Capacity of providing large aeronautical components within industrial quality standards
- Capacity to support documentation and means of compliance to achieve experimental prototype “Permit to Fly” with Airworthiness Authorities (i.e. EASA, FAA and others which may apply)
- Design Organization Approval (DOA)
- Product Organization Approvals (POA)
- Qualification as Material and Ground Testing Laboratory of reference aeronautical companies (i.e. ISO 17025 and Nadcap)
• For each component:

<table>
<thead>
<tr>
<th>Year</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
</tbody>
</table>

MILESTONES Regional Aircraft FTB2 Wing components

- Kick-off
- FDR: Feasibility Design Review
- PDR: Preliminary Design Review
- Tooling
- CDR: Critical Design Review
- TRR: Test Readiness Review
- Assembly
- Delivery
- FLIGHT

MILESTONES LifeRCraft Tail Unit components

- Kick-off
- FDR: Feasibility Design Review
- PDR: Preliminary Design Review
- Tooling
- CDR: Critical Design Review
- Assembly
- Delivery
- TRR: Test Readiness Review
- FLIGHT
Leading Companies: Alenia Aermacchi

Estimated Funding: 7,5 M€

Duration: 7 Years

Start date: 01/04/2015

Overview:

Improvement of advanced technologies and methodologies coming from the Clean Sky - GRA ITD, FP7 MAAXIMUS, FP7 SARISTU to make them ready for the industrialization phase of a new regional aircraft fuselage.

2 lines of activities to be performed the CP:

- Development of advanced methodologies and technologies for maintenance, repair, non-destructive inspection and structural health monitoring;
- Fuselage components design, manufacturing and testing for verification and validation of new methodologies and technologies
Advanced methodologies and technologies for maintenance, repair, NDI and SHM

• Related technologies:
 – Self-monitoring and self-repairing of composite structures
 – Health monitoring and inspection interval determination
 – Residual strength assessment
 – Structural degradation assessment
 – Advanced repair technologies aimed at improving safety and reducing service costs

• Tasks:
 – Maintenance and repair
 – SHM methodology and technology maturation to TRL 6

Manufacturing & testing for Verification and Validation

• Skin/stringers: pre-preg technique shall be used with technologies for inclusion of new functionalities (examples):
 – Embedded damping veil for acoustic improvements
 – Embedded EME and Lightning features (as well as nano-materials or further suitable solutions)
 – Integrated thermal protection

• For fittings, aft. pressure bulkhead, windows frames: advanced processes such as RTM, thermoplastic forming to be improved for industrialization.
AIR-02-03: Advanced Technologies for More Affordable Composite Fuselage (3/3)

SKILLS and SCHEDULE

• Special skills, capabilities

Leadership	International proven experience leading in European project with wide expertise in management of research first level work package.
Designer and Stress Analyst	Proven competence in leading large-scale structural analysis, with emphasis on damage, impact, wave propagation.
Manufacturer	Proven experience from manufacturing of substructures in form of a real scale A/C panels and integration of SHM systems.
Optimizer	Internationally leading specialists in numerical optimization.
Massive computation	Internationally leading HPC-specialists in HPC, large-scale dynamic non-linear structural analysis and advanced damage modelling.
NDI specialist	Proven experience on non-destructive inspections.
Experimentalist	Appropriate experience in experimental testing and in particular in impact and residual strength testing of stiffened composite panels.
Repair specialist	Proven experience in composites A/C repair.
Certifier	Proven experience in A/C certification and setting up inspection schemes.

• Schedule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B-HVE</td>
<td>Advanced Fuselage</td>
<td>Feasibility development, manufacturing</td>
<td>TRL 3/4</td>
<td>TRL 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Validation & substantiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRL 5: Components validated for IADP integration testing</td>
</tr>
</tbody>
</table>

TRL 3/4, TRL 4, TRL 5, TRL 6

large full-scale demonstrators, support to IADPs
• Leading Company: **Airbus Helicopters**
• Estimated Funding: **5,5 M€**
• Duration: **5,5 Years**
• Start date: **01/04/2015**
• Overview:

 Development, manufacturing and test of wings for Fast Rotorcraft (Compound). The wings consist of:
 - Main structure (Spars, skins, fuselage attachment)
 - Flaps over full wing-span (20% to 30% of chord)
 - Structural provisions for Landing Gears, Propeller Gear Boxes, Flaps actuation, Propeller Drive Shafts, Landing Gears (TBC)
 - Maintenance openings/covers
 - Fairings: interface fuselage/wing, Propeller Gear Box, landing gear doors (TBC)
• **Development** of the wing-concept within the boundaries of the AH-overall specification of IADP Fast Rotorcraft WP 2 LifeRCraft
 – Development of the structural concept
 – Selection of materials and manufacturing processes (harmonized with AH)
 – Detailed layout and design
 – Substantiation file (incl. tests)
 – Contributing to permit to fly
 – Support to ground- and flight tests

 Note: the external shape of the wing and the fairing will be an input given by AH specification

• **Manufacturing** of all the Single Parts of the Wings for ground tests and flying demo \([B-1.1.2]\)

• **Assembly** of wings for ground tests and flying demo \([B-1.1.3]\)
SCOPE OF WORK

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LifeRCraft IADP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layout & Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing of test parts & demonstrator fuselage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contribution to Permit to Fly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support to ground & flight tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airframe ITD platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final Demo Review